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A derivation of the equations of motion for a mixed quantum-classical system in a dissipative environment
is presented. The classical environment of the quantum subsystem is taken to be composed of two parts: the
first part, termed the classical subsystem, comprises those degrees of freedom that are coupled directly to the
quantum subsystem, whereas the second part is a large bath that is coupled only to the classical subsystem.
Projection operator methods are used to eliminate the bath degrees of freedom yielding a dissipative equation
of motion for the coupled quantum and classical subsystems.

1. Introduction

We consider the dynamics of a quantum system embedded
in a classical dissipative environment. In many circumstances
one is interested in situations where a certain number of degrees
of freedom of a system must be treated quantum mechanically,
whereas the remainder can be treated classically to a good degree
of accuracy. If the classical environment is very large and its
dynamics occurs on a rapid time scale, it may often be
approximated by dissipative equations of motion.

Such a treatment of the environment is well known for a
classical Brownian particle in a fluid and leads to the Langevin
or Fokker-Planck equations of motion. The effects of the
environment are contained in the friction coefficient and random
force. The Fokker-Planck equation for the probability density
F(R, P, T) of finding the Brownian particle with momentumP
and positionR at time t is1

whereú is the friction coefficient. The first two terms in this
equation describe the streaming and motion in the mean potential
with mean forceF , whereas the last term accounts for the
dynamical effects of the environment on this motion.

Master and Fokker-Planck equations involving frictional
dissipation have also been derived for open quantum systems.2-5

In these approaches, the environmental degrees of freedom are
often taken to be a harmonic bath bilinearly coupled to the
subsystem of interest, and the equation of motion for the reduced
density matrix takes the form3

where R̂ and P̂ are the position and momentum operators of
the degrees of freedom of the quantum subsystem to which the

bath couples, andú is a friction coefficient related to the Ohmic
spectral distribution of the harmonic bath.

These dissipative equations of motion have also been
employed to study systems where a subset of nuclear degrees
of freedom of the quantum subsystem are singled out as having
a more classical character. When the remaining quantum degrees
of freedom are treated in a Hilbert space representation and the
nuclear degrees of freedom are Wigner transformed, one obtains
the multistate quantum Fokker-Planck equation of Tanimura
and Mukamel.5,6

At the outset, we restrict our considerations to systems that
can be modeled as deterministic mixed quantum-classical
systems in which a subset of quantum degrees of freedom is
identified and the remainder of the degrees of freedom are
assumed to have a classical-like character. The motivation for
this decomposition arises both from the nature of the systems
chosen for study, for example, systems with light and heavy
particles and, on the practical side, from our inability to simulate
fully quantum systems with many degrees of freedom that arise
in condensed phase dynamics. Derivations of such mixed
quantum-classical models from the full quantum mechanical
equations of motion show that even the “classical” degrees of
freedom acquire a quantum character and no longer follow
Newton’s equations of motion, since both types of degrees of
freedom remain coupled.7-14 Such deterministic mixed quantum-
classical models form the basis for most of the surface-hopping
schemes currently in use to treat nonadiabatic dynamics.14-19

The mutual coupling between these subsystems is evident in
the algorithms that account for the momentum changes in the
classical degrees of freedom that accompany quantum transi-
tions.

In this paper we consider the case where part of the
deterministic classical environment may be described as a heat
bath. More specifically, we focus on a system composed of a
quantum subsystem embedded in a classical environment but
imagine that the quantum degrees of freedom communicate
directly only with a certain subset of the classical degrees of
freedom. These special classical degrees of freedom are coupled
to the much larger remainder of degrees of freedom of the
environment which, themselves, do not couple directly to the
quantum subsystem. The quantum and classical subsystems are
fully coupled and, within the context of mixed quantum-classical† Part of the special issue “William H. Miller Festschrift”.
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dynamics, the quantum dynamics affects the classical evolution
and vice versa.

One may easily imagine situations where such a description
applies; for example, one may consider a proton or electron
transfer process in a condensed phase. The solvent molecules
in the immediate neighborhood of the transferring proton or
electron will couple directly to its dynamics, but the distant
solvent molecules will act like a dissipative environment. Other
applications of this type, where electronic degrees of freedom
are coupled to specific nuclear degrees of freedom which are
themselves coupled to a dissipative bath, are the domain of
descriptions by the multistate quantum Fokker-Planck equa-
tion.5,6

We carry out a reduction of the deterministic mixed quantum-
classical equations of motion to dissipative equations where a
portion of the classical environmental dynamics is described
by a Fokker-Planck operator with a specific form for the
friction tensor that depends on the remaining classical coordi-
nates. In section 2 we specify the system described above in
quantitative terms. Section 3 uses projection operator methods
to obtain an equation of motion for the relevant degrees of
freedom in the quantum subsystem and its directly coupled
classical environment. This complicated equation is reduced to
an evolution equation for a mixed quantum-classical system in
a dissipative bath in section 4. The conclusions of the study
are presented in section 5.

2. Mixed Quantum-Classical Dynamics

The starting point of the calculation is the equation of motion
for a mixed quantum-classical system,8-14

The last line in eq 3 defines the mixed quantum-classical
Liouville operator, L̂ . This equation is obtained from the
quantum mechanical Liouville equation for the entire system,
assumed to be composed of a quantum subsystem of particles
of massm and a quantum environment of particles of massM.
A partial Wigner transform20 over the quantum environmental
degrees of freedom is performed while maintaining a Hilbert
space description of the quantum subsystem. Finally, the small
mass ratio orp limit is taken for the environmental degrees of
freedom to obtain eq 3.13 The partially Wigner transformed
density matrix in the mixed quantum-classical limit,F̂W(R, P,
t), depends on the classical phase space coordinates of the
environment, (R, P), but is still an abstract operator in the
quantum subsystem Hilbert space. The partially Wigner-
transformed Hamiltonian appearing in this equation is

where p̂ and q̂ are the quantum subsystem momentum and
position operators. The potential energyV̂W(q̂, R) includes all
contributions arising from interactions within the quantum
subsystem, its classical environment, and the coupling between
them. We note that because coupling between the quantum and
classical subsystems is retained in this equation, their evolutions
are neither independent nor are they mean-field-like. For

example, if this evolution equation is expressed in an adiabatic
basis, the coupling terms are responsible both for quantum
transitions among the adiabatic states and the momentum
changes in the classical degrees of freedom that occur as a result
of these transitions. Consequently, within this semiclassical
approximation of the environment, they provide a means to
study surface-hopping descriptions of nonadiabatic dynamics
in a consistent manner.

We now suppose that the environment is partitioned into two
subsystems: a classical subsystem and bath with phase space
coordinates (R′, P′) and (R′′, P′′), respectively. Thus, (R, P) )
(R′, R′′, P′, P′′) ) (R′, P′) (R′′, P′′). The classical subsystem is
coupled directly to the quantum subsystem; however, we assume
the classical bath couples only to the classical subsystem. A
schematic representation of such a system is depicted in Figure
1. Because several types of subsystems will figure in the
presentation below, we shall consistently use the following
terminology: the quantum degrees of freedom will be referred
to as thequantum subsystem; the classical degrees of freedom
that are directly coupled to the quantum subsystem will be called
theclassical subsystem. These two subsystems taken as a single
dynamical system will be called themixed quantum-classical
subsystem. The remaining classical degrees of freedom form a
bath for this mixed quantum-classical subsystem. Given these
specifications, we may write the partially Wigner-transformed
Hamiltonian in the form

Here we have definedĤW (R′, P′) ) P′2/2M + p̂2/2m +
V̂′W(q̂, R′) as the Hamiltonian for the mixed quantum-classical
subsystem, whileH0(R′, R′′, P′′) ) H′′B(R′′, P′′) + VCB(R′, R′′)
is the Hamiltonian for the classical bath,H′′B(R′′, P′′) )
P′2/2M + VB(R′′), in the potential fieldVCB(R′, R′′) of the fixed
particles in the classical subsystem.

Using the decomposition in eq 5, the mixed quantum-classical
Liouville operator for the entire system may be written as

Figure 1. Schematic picture of a quantum subsystem (QS) coupled to
a classical environment which is itself partitioned into a classical
subsystem (CS) and a bath (B).
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Here and in the sequel we use the following notation: if a
quantity depends only on (R′, P′) or (R′′, P′′) it will have a
prime or double prime, respectively. If a quantity depends on
both types of classical phase space coordinates, it will lack
primes.

3. Projection onto a Mixed Quantum-Classical Subsystem

We now project the bath (R′′, P′′) variables to obtain an
equation of motion for the mixed quantum-classical subsystem.
In particular, we seek an evolution equation for

We follow a procedure analogous to that used in the derivation
of equations of motion for a quantum subsystem in a quantum
environment,21 but modified to account for the mixed quantum-
classical description of the dynamics. To this end we define
the projection operatorP acting on any mixed quantum-
classical operatorf̂(R, P) as22

This symmetrized form is used because the observables and
density matrix are operators in the quantum degrees of
freedom.21,23 The operatorF̂ce is defined as follows: suppose
F̂W,e is the canonical equilibrium density matrix for the entire
system, the mixed quantum-classical subsystem plus the bath.
It is stationary under the mixed quantum-classical evolution,
iL̂ F̂W,e ) 0. We let

where

Its adjoint isF̂ce
† ) (F̂′c)-1F̂W,e. While F̂ce does not have a simple

physical interpretation, its classical analogue is a conditional
probability density familar in derivations of Langevin or
Fokker-Planck equations in Brownian motion theory.24 In the
quantum case its use permits a clear classification of terms in
the generalized equation of motion.21

Using the fact that

and standard projection operator algebra25, we find

where we have defined the symbol (Â, B̂)s by

for any operatorsÂ andB̂. We shall continue to use this notation
below in order to write equations in a compact form. In eq 12,
Q ) 1 - P is the complement ofP while the last line of this
equation defines the streaming,S , memory,M , and initial

condition,I , terms. More explicit forms for the streaming and
memory terms can be derived using the definitions of the
operators given above.

Using the definition of the operatoriL , the streaming term
may be evaluated to give

where F̂ ce ) - 〈∂VCB/∂R′〉ce and the angle brackets define an
average over the bath degrees of freedom usingF̂ce,

The -iL̂ ′W(t) contribution to the streaming term describes
the time evolution of the mixed quantum-classical subsystem
isolated from the bath. This term has exactly the form of the
mixed quantum-classical Liouville equation with the classical
environment restricted to the classical subsystem degrees of
freedom, (R′, P′). The second term yields an additional “force”
term to the evolution arising from the classical subsystem-bath
coupling potential energy averaged over the bath degrees of
freedom with F̂ce. The form of this force-like quantity is
complicated becauseF̂ce depends on bothR′ andP′ and is still
an operator in the quantum degrees of freedom.

The computation of the memory term entails the evaluation
of Q iL̂ (F̂ce, F̂′W(t))s. Once again, using the definitions of the
operators given above, we may write this term more explicitly
as

Here the force due to the coupling potential isFCB ) -∂VCB/
∂R′. The form of this term arises from the operator character
and full phase space dependence ofF̂ce. Even thought the bath
couples only to the classical subsystem degrees of freedom, and
not directly to the quantum operators, the subsystem dynamics
is complicated due to the indirect coupling arising from these
effects.

Inserting this expression into the memory term in eq 12 and
simplifying the action of the firstiL̂ operator we find

The memory term accounts for dynamical contributions coming
from the coupling to the bath. As it stands, this equation is not
very useful. Below we shall consider the approximations needed
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to convert it into a useful form and examine the content of the
resulting dissipative dynamics.

4. Dissipative Mixed Quantum-Classical Evolution

The projection operator formalism provided an equation of
motion for the mixed quantum-classical subsystem; however,
this equation is not closed because it depends on the initial
condition of the density matrix of the entire system,F̂W(0). To
proceed further, we assume that the characteristic relaxation time
of the bath,τB, is much shorter than that of the mixed quantum-
classical subsystem. If we consider the evolution for times long
compared toτB, the initial condition termI (t) will decay to
zero and may be neglected because its projected evolution occurs
on the bath time scale.

To simplify the streaming and memory terms, we first
examine the structure ofF̂ce in more detail. To this end we write
the equilibrium density matrix for the entire system,F̂W,e as

where F̂W,e(R′, P′) is the equilibrium density for the isolated
mixed quantum-classical system satisfying

andF0(R,P) is the bath equilibrium density conditional upon a
fixed configuration of the classical particles in the mixed
quantum-classical subsystem satisfying

The bath conditional density is given by

where

Because the equilibrium density satisfiesiL̂ F̂W,e ) 0, we
may solve for the correctionø̂W,e in the form

To lowest order in eitherp or, if an adiabatic basis is used, to
lowest order in the nonadiabatic coupling,F̂′W,e ) Z-1

exp(-âH′W),26 and in this approximationø̂W,e ) 0 because of
the action of (∂/∂P′ + âP′/M) on F̂′W,e. Consequently, we may
replaceF̂W,e by the first term in eq 18 to a good approximation.

In this approximation we haveF̂ce ) F0, which is no longer
an operator in the quantum degrees of freedom. As a result we
have simply (F̂ce, F̂′W(t))s ) F0F̂′W(t). The streaming term may
now be written as

with the mean forceF defined byF ) - 〈∂VCB/∂R′〉0. Using
the fact that

where we have definedδFCB(R′′, R′) ) FCB(R′′, R′) - F (R′),
we may write the memory term in the simpler form

whereQ 0 ) 1 - P 0 with P 0 f̂ ) F0 ∫ dR′′ dP′′ f̂. The angle
brackets〈‚‚‚〉0 denote an equilibrium average overF0:

The evolution operator isiL̂ ) iL̂ ′ + iL 0. In accord with
our assumption that bath dynamical variables decay rapidly, we
may approximately write the force autocorrelation function in
this expression in terms of the fixed particle force autocorrelation
function, so that

where

Because this correlation will decay on the bath time scale, for
times long compared to the bath relaxation time we may replace
the correlation function by its delta function limit and write it
in terms of the fixed particle friction tensorú(R′) as

Thus, the memory kernel takes the form

Putting these results together we obtain a dissipative equation
for the mixed quantum-classical evolution

The effects of the dynamics of the bath degrees of freedom on
the mixed quantum-classical subsystem take the form of a
Fokker-Planck-like operator that depends on the fixed particle
friction tensor. Because of the dependence of the friction tensor
on the configuration space coordinates of the classical sub-
system, this expression is difficult to deal with, although forms
for theR′ dependence ofú(R′) are known when the interactions
are computed in hydrodynamics.27 If the configuration depen-
dence of the friction tensor is neglected we have

whereL ′FP is the usual Fokker-Planck operator

This equation is equivalent to the multistate quantum Fokker-
Planck equation2 in the semiclassical limit.

5. Conclusion

Dissipative equations of motion for open quantum systems
have been derived by many authors and continue to be a topic
of active investigation.2
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Equations 32 and 33 are the main results of this paper. Several
features of their derivation and structure merit additional
comment. Given the semiclassical description of the environ-
ment that is adopted from the outset of the calculation, no further
restrictions on the form of the bath or its interactions with the
classical subsystem are made. In particular, the bath need not
be a collection of harmonic oscillators bilinearly coupled to the
system of interest. Projection operator methods must be applied
with care when extracting subsystem dynamics from the
dynamics of the full quantum system. The choice of projection
operator determines whether initial condition effects on the
evolution can be neglected after a transient time; it also
determines the balance between the contributions of the stream-
ing and memory terms in the weak coupling limit of the final
subsystem evolution equation.21 Similar considerations enter in
the present projection operator formalism because the operator
character of the relevant dynamical quantities survives in the
semiclassical limit. In addition to these considerations, the
present projection operators have been constructed to yield the
correct structure of the multiparticle Brownian motion of the
classical subsystem.

The result of this analysis is eq 32, which retains the full
semiclassical structure of the quantum and classical subsystem
dynamics, including their mutual coupling, but accounts for the
interaction of bath with the classical subsystem through a
multiparticle Fokker-Planck operator with a space-dependent
friction coefficient that depends on the coordinates of the
classical subsystem. An explicit expression is given for this
quantity in terms of a fixed-particle bath force autocorrelation
function analogous to that appearing in the Brownian motion
theory for many particles. Multiparticle Brownian motion theory
involves a number of subtle features; for example, it is only in
the fixed-particle limit that the friction kernel takes a simple
form and the Langevin and Fokker-Planck descriptions exhibit
differences in general.24 The fixed particle space-dependent
friction kernel appearing in eq 32 may be computed from the
purely classical evolution of the fixed-particle forces on the
classical subsystem particles; thus, while the calculation is
difficult, it is within the scope of current molecular dynamics
simulation methods.

In the limit where there is a single relevant degree of freedom
in the classical subsystem, or all configuration space dependence
of the friction is suppressed, the friction tensor reduces to a
constant scalar. The resulting equation is identical in form (when
expressed in a quantum subsystem basis) to the semiclassical
limit of the multistate quantum Fokker-Planck equation of
Tanimura and Mukamel.6

The multiparticle Fokker-Planck description of the effects
of the bath on the dynamics of a mixed quantum-classical system
could prove useful in some circumstances. As noted earlier, one
practical reason for adopting a description in terms of mixed
quantum-classical dynamics, or variants that incorporate ad-
ditional dispersion in the nuclear degrees of freedom, is that
simulations of the dynamics of realistic many-body systems
become feasible.14-18,28-32 However, for very large systems one
may still wish to single out some of the classcial degrees of
freedom for a less detailed treatment. As an example, one may
consider the dynamics of a proton or electron transfer in a large
biomolecule in a solvent. Some aspects of the solvent dynamics
can be captured by a friction tensor that depends on the

configuration of the biopolymer. Such space-dependent frictional
effects are familiar in polymer dynamics and arise from Oseen
interactions among the polymer units.33
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