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A derivation of the equations of motion for a mixed quantum-classical system in a dissipative environment

is presented. The classical environment of the quantum subsystem is taken to be composed of two parts: the
first part, termed the classical subsystem, comprises those degrees of freedom that are coupled directly to the
quantum subsystem, whereas the second part is a large bath that is coupled only to the classical subsystem.
Projection operator methods are used to eliminate the bath degrees of freedom yielding a dissipative equation
of motion for the coupled quantum and classical subsystems.

1. Introduction bath couples, andis a friction coefficient related to the Ohmic

We consider the dynamics of a quantum system embeddedSpectral dls_trlt.)utlc?n of the h_armonlc bath.
in a classical dissipative environment. In many circumstances ~1hese dissipative equations of motion have also been
one is interested in situations where a certain number of degreesmMployed to study systems where a subset of nuclear degrees
of freedom of a system must be treated quantum mechanically,Of freedom of the quantum subsystem are singled out as having
whereas the remainder can be treated classically to a good degre@ More classical character. When the remaining quantum degrees

of accuracy. If the classical environment is very large and its of freedom are treated in a Hilbert_space representation and t_he
dynamics occurs on a rapid time scale, it may often be huclear degrees of freedom are Wigner transformed, one obtains

approximated by dissipative equations of motion. the multistate guantum FokkePlanck equat|0n of Tanimura
Such a treatment of the environment is well known for a and Mukamef:

classical Brownian particle in a fluid and leads to the Langevin
or Fokker-Planck equations of motion. The effects of the
environment are contained in the friction coefficient and random
force. The FokkerPlanck equation for the probability density
p(R, P, T) of finding the Brownian particle with momentum
and positionR at timet ist
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where( is the friction coefficient. The first two terms in this

At the outset, we restrict our considerations to systems that
can be modeled as deterministic mixed quantum-classical
systems in which a subset of quantum degrees of freedom is
identified and the remainder of the degrees of freedom are
assumed to have a classical-like character. The motivation for
this decomposition arises both from the nature of the systems
chosen for study, for example, systems with light and heavy
particles and, on the practical side, from our inability to simulate
fully quantum systems with many degrees of freedom that arise
in condensed phase dynamics. Derivations of such mixed
guantum-classical models from the full quantum mechanical
equations of motion show that even the “classical” degrees of
freedom acquire a quantum character and no longer follow

equation describe the streaming and motion in the mean potentiaNewton’s equations of motion, since both types of degrees of

with mean forceF , whereas the last term accounts for the
dynamical effects of the environment on this motion.

Master and FokkerPlanck equations involving frictional
dissipation have also been derived for open quantum systéms.

freedom remain coupled!* Such deterministic mixed quantum-
classical models form the basis for most of the surface-hopping
schemes currently in use to treat nonadiabatic dyna#iég.
The mutual coupling between these subsystems is evident in

In these approaches, the environmental degrees of freedom ar¢he algorithms that account for the momentum changes in the

often taken to be a harmonic bath bilinearly coupled to the

classical degrees of freedom that accompany quantum transi-

subsystem of interest, and the equation of motion for the reducedtions.

density matrix takes the forim
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whereR and P are the position and momentum operators of

In this paper we consider the case where part of the
deterministic classical environment may be described as a heat
bath. More specifically, we focus on a system composed of a
guantum subsystem embedded in a classical environment but
imagine that the quantum degrees of freedom communicate
directly only with a certain subset of the classical degrees of
freedom. These special classical degrees of freedom are coupled
to the much larger remainder of degrees of freedom of the

the degrees of freedom of the quantum subsystem to which theenvironment which, themselves, do not couple directly to the

T Part of the special issue “William H. Miller Festschrift”.

guantum subsystem. The quantum and classical subsystems are
fully coupled and, within the context of mixed quantum-classical
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dynamics, the quantum dynamics affects the classical evolution
and vice versa.

One may easily imagine situations where such a description
applies; for example, one may consider a proton or electron
transfer process in a condensed phase. The solvent molecules
in the immediate neighborhood of the transferring proton or
electron will couple directly to its dynamics, but the distant
solvent molecules will act like a dissipative environment. Other
applications of this type, where electronic degrees of freedom
are coupled to specific nuclear degrees of freedom which are
themselves coupled to a dissipative bath, are the domain of
descriptions by the multistate quantum FokkBtanck equa-
tion.>6 B

We carry out a reduction of the deterministic mixed quantum-
classical equations of motion to dissipative equations where a
portion of the classical environmental dynamics is described
by a Fokker-Planck operator with a specific form for the Figure 1. Schematic picture of a quantum subsystem (QS) coupled to
friction tensor that depends on the remaining classical coordi- a classical environment which is itself partitioned into a classical
nates. In section 2 we specify the system described above insubsystem (CS) and a bath (B).
quantitative terms. Section 3 uses projection operator methods o } o ) . .
to Obta|n an equa“on Of mo“on for the re'evant degrees of exa!‘np|e, |f thIS e_VO|UtIOI’l equatlon IS expressed N an adlabatIC
freedom in the quantum subsystem and its directly coupled basis, the coupling terms are responsible both for quantum
classical environment. This complicated equation is reduced to transitions among the adiabatic states and the momentum
an evolution equation for a mixed quantum-classical system in changes in the classical degrees of freedom that occur as a result

CS

are presented in section 5. approximation of the environment, they provide a means to
study surface-hopping descriptions of nonadiabatic dynamics
2. Mixed Quantum-Classical Dynamics In a consistent manner.

) . . ) . We now suppose that the environment is partitioned into two
The starting point of the calculation |s:1the equation of motion g psystems: a classical subsystem and bath with phase space
for a mixed quantum-classical systént: coordinatesR, P') and R’, P"), respectively. Thus X, P) =
(R,R',P,P")=(R,P) (R', P"). The classical subsystem is

Ipw(R, P, ) _ i BB )] coupled directly to the quantum subsystem; however, we assume
ot o h[ wr )] the classical bath couples only to the classical subsystem. A
1.~ R N schematic representation of such a system is depicted in Figure

S{Hw (0} — {Pudt), Hud) = 1. Because several types of subsystems will figure in the

-l PR, P} (3) presentation below, we shall consistently use the following

terminology: the quantum degrees of freedom will be referred
L . . . to as thequantum subsysterthe classical degrees of freedom
The last line in eq 3 defines the mixed quantum-classical 5 are directly coupled to the quantum subsystem will be called
Liouville operator, L. T.h's _equation is obtained _from the  theclassical subsysterthese two subsystems taken as a single
guantum mechanical Liouville equation for the entire syste.m, dynamical system will be called thaixed quantum-classical
assumed to be composed of a quantum subsystem of par'['Cle§ubsystemThe remaining classical degrees of freedom form a

of ma;srln and a quant]lcjmﬁgnwronkr]nent of particles of mfbs ,  bathfor this mixed quantum-classical subsystem. Given these
A partial Wigner transforit over the quantum environmental g e ciications, we may write the partially Wigner-transformed
degrees of freedom is performed while maintaining a Hilbert Hamiltonian in the form

space description of the quantum subsystem. Finally, the small

mass ratio ofi limit is taken for the environmental degrees of P2 5. "2

freedom to obtain eq B The partially Wigner transformed  H,, (R, P) = -— Py Vi@ R) + 5=+

density matrix in the mixed quantum-classical linfit R, P, 2M - 2m 2M

t), depends on the classical phase space coordinates of the Ve(R") + Ves(R, RY)

environment, R, P), but is still an abstract operator in the
quantum subsystem Hilbert space. The partially Wigner-

I:|(N(R, P) + Hg(R', P") + V5(R, R")

transformed Hamiltonian appearing in this equation is = F'(/v (R,P)+ Hy(R,R',P") (5)
~ L T Here we have defineddw (R, P) = P'22M + p¥2m +
HwR, P) = 2M E\—i_ Vul@ R) ) V,(&, R) as the Hamiltonian for the mixed quantum-classical

subsystem, whilédo(R, R’, P'") = Hg(R', P") + Vca(R, R")
where p and § are the quantum subsystem momentum and iS the Hamiltonian for the classical bathig(R', P") =
position operators. The potential enerdy(d, R) includes all P'?2M + Vg(R"), in the potential field/cs(R, R") of the fixed
contributions arising from interactions within the quantum particles in the classical subsystem.
subsystem, its classical environment, and the coupling between Using the decomposition in eq 5, the mixed quantum-classical
them. We note that because coupling between the quantum and-iouville operator for the entire system may be written as
classical subsystems is retained in this equation, their evolutions e )
are neither independent nor are they mean-field-like. For iL =iL "+ilL, (6)
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Here and in the sequel we use the following notation: if a condition,l , terms. More explicit forms for the streaming and
quantity depends only orR{, P') or (R’, P") it will have a memory terms can be derived using the definitions of the
prime or double prime, respectively. If a quantity depends on operators given above.

both types of classical phase space coordinates, it will lack  Using the definition of the operatdk , the streaming term
primes. may be evaluated to give

3. Projection onto a Mixed Quantum-Classical Subsystem

NN d LA
S({t)=-IiL "py(t) — == * (F .o t 14
We now project the bathR(, P") variables to obtain an ® Autt) P’ (Fee AdD): (14)

equation of motion for the mixed quantum-classical subsystem. )
In particular, we seek an evolution equation for where F . = — [@Ves/;r[J. and the angle brackets define an
average over the bath degrees of freedom uging

P =R, P, )= [(dR'dP' (R, P, 1)  (7)

We follow a procedure analogous to that used in the derivation
of equations of motion for a quantum subsystem in a quantum A, o ) )
environmeng! but modified to account for the mixed quantum- "€ —iL () contribution to the streaming term describes

classical description of the dynamics. To this end we define the time evolution of the mixed quantum-classical subsystem
the projection operatoP acting on any mixed quantum- isolated from the bath. This term has exactly the form of the

classical operatoi(R, P) ag? mix_ed quantum-cl_assical Liouville equation with the classical
environment restricted to the classical subsystem degrees of
freedom, R, P'). The second term yields an additional “force”
term to the evolution arising from the classical subsystem-bath
coupling potential energy averaged over the bath degrees of
This symmetrized form is used because the observables andreedom with e The form of this force-like quantity is
density matrix are operators in the quantum degrees of complicated becausi.depends on botR andP’ and is still
freedom?'-23 The operatofpc. is defined as follows: suppose  an operator in the quantum degrees of freedom.

pwe is the canonical equilibrium density matrix for the entire The computation of the memory term entails the evaluation
system, the mixed quantum-classical subsystem plus the bath ¢ Q i (Peer P(t))s OnNce again, using the definitions of the

!tAis stationary under the mixed quantum-classical evolution, operators given above, we may write this term more explicitly
iL pwe = 0. We let as

pedR P) = pye(R P)(p) (R, P) )

E[e= [ dR" dP" =+ pe, (15)

P (R P)zé(bce( JdrR'dP" f) + (f dR'dP" 1) pL) (8)

FRIPYN ~y 8 ~ ~1
Q iL (pce’ va(t))s = Q FCB : ﬁ(pcev Pwls —

where Pog 5
M : ﬁ(f)ce’ Z)(N st |Fce ﬁ(ﬁce! f){l\l s T
PR, P)= [ dR" dP"py (R, P (10) o 1 ok
= -~ VI , -~ T P -~ , ~1 'VI T +
Its adjoint isp!, = (.)~pwe. While pce does not have a simple . 2(Pee Voo Pt ')s = SlPee 1P Vool )s
physical interpretation, its classical analogue is a conditional SR 515+ 5 TR 351 — (FH. 53" 5 16
probability density familar in derivations of Langevin or 2([ ws Ped b+ Bl Hi, Ped) = {Ho, Aedd”, Bi)s (16)

Fokker-Planck equations in Brownian motion thedfyin the
quantum case its use permits a clear classification of terms inHere the force due to the coupling potentiaFiss = —dVce/
the generalized equation of motiéh. oR'. The form of this term arises from the operator character
Using the fact that and full phase space dependenceg@f Even thought the bath
couples only to the classical subsystem degrees of freedom, and
f dR"dP" P p,, (R P, t) = o (R, P, 1) (11) not directly to the quantum operators, the subsystem dynamics
is complicated due to the indirect coupling arising from these

and standard projection operator algéhrave find effects.
N Inserting this expression into the memory term in eq 12 and
895,\;('() _ _ f dR" dP" iL (e piy(D)s + simplifying the action of the firstiL operator we find
t ] r o A -t a7 A ~y r i “t—t'
b/(‘)dt de' dP" il e D QL (Boo pult))s — M(t)=‘/:dt'%de” dP" Foge QL 1)

[ dR'dP" iL e79'Q 5, 0)

9. Py
QFcs 25 (Pce PML)) — 17 * 55 (Peer PWE))s T
=S +M®)+10 (12) ( e P s MR

(oo Pee Bkt + e { Ve Bkt )s —
5 Gee 1), Vot )5+ 5 ([Pl BodBit) +
Pt) A D) — (Ho, ped ", Plt))s (17)

where we have defined the symbd\, B)s by
(A, B),= %(AB + BAN (13)

for any operatoré andB. We shall continue to use this notation

below in order to write equations in a compact form. In eq 12, The memory term accounts for dynamical contributions coming
Q =1— P isthe complement dP while the last line of this from the coupling to the bath. As it stands, this equation is not
equation defines the streaming, memory,M, and initial very useful. Below we shall consider the approximations needed
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to convert it into a useful form and examine the content of the M (t) =

resulting dissipative dynamics.

4. Dissipative Mixed Quantum-Classical Evolution

The projection operator formalism provided an equation of
motion for the mixed quantum-classical subsystem; however,
this equation is not closed because it depends on the initial

condition of the density matrix of the entire systes(0). To

e = QoL (t— 1) D PV
Jo ot G Fcse 2 OoF el (o5 + Ayt (26)

whereQ o =1 — P owith P of = po / dR’ dP" f. The angle
bracketsd:+[d denote an equilibrium average ovey.

E-[g= [ dR" dP"+p, (27)

proceed further, we assume that the characteristic relaxation time  The evolution operator il = iL ' + iL o. In accord with

of the bathzg, is much shorter than that of the mixed quantum- our assumption that bath dynamical variables decay rapidly, we
classical subsystem. If we consider the evolution for times long may approximately write the force autocorrelation function in

compared torg, the initial condition terml (t) will decay to

this expression in terms of the fixed particle force autocorrelation

zero and may be neglected because its projected evolution occurgynction, so that

on the bath time scale.

To simplify the streaming and memory terms, we first
examine the structure @t in more detail. To this end we write
the equilibrium density matrix for the entire systepe as

f’w,e = fA’vv,e(R': P)po(R, P) + JAva,e

where pwe(R, P') is the equilibrium density for the isolated
mixed quantum-classical system satisfying

(18)

il "pwdR,P)=0 (19)
and pg(R,P) is the bath equilibrium density conditional upon a
fixed configuration of the classical particles in the mixed
guantum-classical subsystem satisfying

iL op(R, P =0 (20)
The bath conditional density is given by
po(R, P =Z(R) e (21)
where
Z(R)= [ dR'dP" e (22)

Because the equilibrium density satisfigSpwe = 0, we
may solve for the correctiofpwe in the form

e = (L ) s (5 + Bl 0 @)
To lowest order in eitheh or, if an adiabatic basis is used, to
lowest order in the nonadiabatic coupling,,, = Z*
exp(=pH,),?¢ and in this approximatiofiwe = O because of
the action of {/aP' + SP'/M) on py,.. Consequently, we may
replacepwe by the first term in eq 18 to a good approximation.
In this approximation we havge.e = po, Which is no longer

an operator in the quantum degrees of freedom. As a result we

have simply pce, pu(t))s = popy(t). The streaming term may
now be written as

a'\r

S (0= ~iL "B~ F* 55 (24)

with the mean forcé= defined byF = — [@V¢g/dR 4. Using
the fact that

apO(Rv P) _ _
TR B(Fcg — F)po(R, P) = BOFcppo(R, P) (25)

where we have definedFcg(R’, R) = Fcg(R', R) — F (R),
we may write the memory term in the simpler form

t ., 0 il et 0 P\ ., .
MO = [y 55 K@= e’ 0 (75 + A )
(28)
where
K (t) = DF g " *0F o514 (29)

Because this correlation will decay on the bath time scale, for
times long compared to the bath relaxation time we may replace
the correlation function by its delta function limit and write it

in terms of the fixed particle friction tens@(R) as

K (O~ 200) [ dtK () =28"¢(R)o()  (30)
Thus, the memory kernel takes the form
MO =ER): gl + Tz B0 (3D

Putting these results together we obtain a dissipative equation
for the mixed quantum-classical evolution

Pl _ .~ d .,
ot —-iL ‘o —F 'ﬁPW'F
Z(R): 2 (—P' + kBT—8 )f)w(t) (32)
P'\M oP'

The effects of the dynamics of the bath degrees of freedom on
the mixed quantum-classical subsystem take the form of a
Fokker—Planck-like operator that depends on the fixed particle
friction tensor. Because of the dependence of the friction tensor
on the configuration space coordinates of the classical sub-
system, this expression is difficult to deal with, although forms
for theR dependence df(R) are known when the interactions
are computed in hydrodynamigslf the configuration depen-
dence of the friction tensor is neglected we have

af)(,\,(t) . A'A' 8 ~Ay a” T
T=—|L Pw— F'ﬁpw_”— e (33)

wherelL  is the usual FokkerPlanck operator
TRy lid -0
IL FP Cap: (M + kBTaPr)

This equation is equivalent to the multistate quantum Fokker
Planck equatiohin the semiclassical limit.

(34)

5. Conclusion

Dissipative equations of motion for open quantum systems
have been derived by many authors and continue to be a topic
of active investigation.



Quantum-Classical Dynamics in a Classical Bath J. Phys. Chem. A, Vol. 105, No. 12, 2002889

Equations 32 and 33 are the main results of this paper. Severalconfiguration of the biopolymer. Such space-dependent frictional
features of their derivation and structure merit additional effects are familiar in polymer dynamics and arise from Oseen
comment. Given the semiclassical description of the environ- interactions among the polymer untts.
ment that is adopted from the outset of the calculation, no further
restrictions on the form of the bath or its interactions with the  Acknowledgment. This work was supported in part by a
classical subsystem are made. In particular, the bath need nogrant from the Natural Sciences and Engineering Research
be a collection of harmonic oscillators bilinearly coupled to the Council of Canada. Acknowledgment is made to the donors of
system of interest. Projection operator methods must be appliedthe Petroleum Research Fund, administered by the ACS, for

with care when extracting subsystem dynamics from the
dynamics of the full quantum system. The choice of projection
operator determines whether initial condition effects on the
evolution can be neglected after a transient time; it also

determines the balance between the contributions of the stream-

ing and memory terms in the weak coupling limit of the final
subsystem evolution equati@hSimilar considerations enter in

partial support of this research.
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